QUALITY-DRIVEN OPTIMIZATION

RESOURCE EFFICIENT PARAMETER DETERMINATION FOR LARGE-SCALE AM

Felipe Arango Callejas¹, Paul Victor Osswald¹, Jaan-Willem Simon²

- Motivation.

Printing settings, including temperature profiles, bead geometry, and speed, significantly affect the performance of parts in large-scale extrusion additive manufacturing. Qualifying a new material can be challenging due to the difficulty in determining the correct values for reliable performance assessment. A proposed method focuses on easily measurable aspects of the specimens to establish initial parameter values before further qualification and testing.

QUALITY DEFINITION AND EVALUATION

- Optimization and parameter tuning schemes based solely on mechanical properties often neglect other important aspects of part performance.
- **Quality** was defined using a combination of criteria, relevant to the material's intended use.

Impact on material qualification

Resources and time

• Weights were assigned to reflect each criterion's importance.

PARAMETER INFLUENCE ON QUALITY

OPTIMIZATION AND TESTING

- Layer Height and Layer Width were chosen for further testing.
- 9 parameter combinations and 15 specimens were printed.

- ✓ High accuracy (< 2%)</p>
- Excellent layer alignment

_ Affiliations.

¹BMW Group, Munich, Germany.

²Universität Wuppertal, Wuppertal, Germany.